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An approach to evaluating the arrangement of temperature measurement points is 
presented with the aim of improving the conditionality of inverse thermal con- 
ductivity problems. 

It is known that, on account of incorrect statements of inverse thermal conduct:vity 
problems (ITP), their solutions are often sensitive to errors in the initial experimental 
data. However, the investigation results given, for instance, in [i, 2] show that the 
accuracy of solutions of the boundary-value as well the coefficient ITP's depends to a 
considerable extent on the arrangement of the temperature measurement points. In cor~nec- 
tion with this, the problem arises of determining the conditions under which the best ac- 
curacy of ITP solutions can be secured with a limited temperature measurement accura(y. 

Formally, any ITP can be stated in the form of the operator equation 

Au=f, uCU, fCF, (i) 

where u is the solution to be obtained, f are the measured temperatures, and A is an operator 
which establishes the relationship between u and f. 

For the U and F spaces, we most often use the space L 2 of quadratically integrable func- 
tions. The sought solution u often refers to functions appearing in the boundary conditions, 
boundary-value ITP's, or in the thermal conductivity equation - coefficient ITP's. The tem- 
perature is measured at certain points of the region of spatial variables under consideration. 
The arrangement of these points and their number are often limited for technical reasons. 

The right-hand side of Eq. (i) is usually perturbed by systematic and random errors Af, 
i.e., [ = / §  If the ITP is incorrect, small deviations of the right-hand side can re- 
sult in considerable solution errors Au even if the operator A is accurately assigned. We 
rewrite Eq. (i) with an allowance for deviations of the right-hand side and the induced devia- 
tions of the solution: 

Au + (A -,'- ,4 ~) Au = f + A/, (2) 

where A u is the change in the operator A due to its possible nonlinearity. 

The conditionality of ITP refers to the property characterizing mainly the effec< of 
deviations of the right-hand side Af on the solution deviation Au. Assuming that the opera- 
tor A is assigned accurately, we can introduce the conditionality measure r=IIAun/IIAfll as a 
qualitative characteristic of the relationship between Af and Au. An increase in r s:~gni- 
fies a deterioration of the conditionality, while a decrease indicates an improvement of the 
conditionality. 

By subtracting relationship (i) from (2), we obtain an equation relating the deviation 
of the ITP solution Au to the deviation of the right-hand side Af: 

(A -6 A~)Au = Af. (3) 

If the operator A is linear with respect to u, Eq. (3) becomes similar to Eq. (i). 
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It is evident from (3) that the conditionality of the ITP is determined by factors 
affecting the properties of operator A: the dimensions of the region under investigation, 
the thermophysical characteristics of the material, the coordinates of the temperature mea- 
surement points, etc. Thus, for the assigned geometry of the region and the thermophysical 
characteristics of the material, the ITP conditionality can be regulated by choosing the 
coordinates of the temperature measurement points. 

In order to arrive at a criterion for estimating the coordinates of the temperature 
measurement points, we shall consider an extremal statement of ITP. In this case, the sought 
solution is obtained from the condition for the minimum of the functional characterizing 
the deviation of the temperature T = Au, calculated for a certain value of u, from the mea- 
sured temperature f, i.e., inf![Au--~[l �9 For the zero value of the functional, relationship 
(3) evidently holds, u 

On the other hand, this relationship makes it possible to estimate the temperature 
changes at the possible measurement points due to a certain &u value by solving the direct 
problem AT= (A+Au)Au . The deviation of the ITP solution ~ from the exact solution will be 
reduced if the coordinates X of the temperature measurement points are determined from the 
condition 

sup II (A --i- A~) Au [l, ( 4 ) 
X 

t h e  r e a l i z a t i o n  of  which f o r  t he  a s s i g n e d  s t r u c t u r e  of  o p e r a t o r  h and the  l e v e l  of  HAM[, 
a l l  o t h e r  c o n d i t i o n s  be ing  e q u a l ,  l eads  to  a r e d u c t i o n  of  r ,  i . e . ,  an improvement in  the  con- 
d i t i o n a l i t y  of ITP. 

Thus, the measurement points should be located in places where maximum temperature 
changes occur for a fixed variation of the solution to be determined. 

Thus, the measurement points should be located in places wheremaximum temperature 
changes occur for a fixed variation of the solution to be determined. 

As an example, we shall consider in the region {O-~x<~b, to<~t<~th} the boundary-value and 
the coefficient ITP's for the following thermal conductivity model: 

C(T) OTot, = oxO [~(T)O-~x ], O<x<b,  to<t~t~,  (5) 

T(x, to)= To(x), O~x~.b,  

(2--a~)T(0,t) + (1 ~z~);k(T) OT (O, t) 
Ox - -  - ql (t), 

(6) 

(7) 

(2 - -  a.,)T(b, t) + (1 --%))~(T) OT(b, t) 
Ox 

- -  = q~ (0,  ( 8 )  

where g~,i=1,2, are the parameters determining the type of boundary conditions (BC) (~ = i 
pertains to BC of the first kind, while ~ = 2 pertains to BC of the second kind). The func- 
tion T0(x) is assigned. 

Moreover, we assume that temperature measurements are performed at points whose co- 
ordinates are x=X~,i=l, n. A minimum number of points satisfies the conditions for the 
uniqueness of the solution of ITP. 

i. The Boundary-Value ITP. It is necessary to determine the functions u1(t) =q1(t) and 
u2(t) =q2(t) for the general case. The dependences X(T) and C(T) are assigned. 

We assume that the functions (u)t have acquired certain small increments Au(t), i.e., 
u(t):u(t)+A~(t). �9 As a result of this, the temperature T (x, t) varies by a certain small 

amount ~(x, t) , i.e. , T(x,t):T(x,t)-~- ~(x, t) �9 Correspondingly, the thermophysical character- 

istics %(T):%(T)-~- O~ O,and C(T)=C(T)+ 0C~also change. By subtracting relationships 
0T 0T 

(5)-(8) from the relationship of the perturbed problem and neglecting the products of small 
quantities, we obtain the expressions establishing a relationship between Au(t) and @(x, t) : 
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OO _ A(x,  t) 02 ~ OO 
at Ox----- ~ -4- B (x, t) -Ox q- D (x, t) O, 

0 < x < b ,  t o < t ~ t ~ ,  

e(x, to) = O, O~<xGb, 

(9) 

( i o )  

[ ] (2_ch)  q_(l_g~)OE(0,  t) 0(0, t) + (1--  czO Z (O, t) dO(0, t)_Aua(t),  
8x Ox 

(2 - -  ~ )  + (1 - -  a ~ ) - -  O)~ (b, t) ] ~ (b, t) + (1 -- az))~ (b, t) O0 (b, i) _ tUz (t), 
8x J Ox 

( t l )  

(12) 

where 

A (x, t) = ;~ (x,t)/c (x, t) ; 
O;~ (x, 

B (x, t) = 2 0 x  t) / C (x, t) ; 

D (x, t ) :  t[ 0~(x'00x 2 OC(X,ot t ) J / c ( x '  t)" 

aL(0,  t) aL(b, t) The va lues  of A(x, t), B(x, t), and D (x, t )  and a lso  Z ( O , t ) , - - - - ,  Z(b,l), and 
Ox Ox 

can be calculated by solving problem (5)-(8) for the a priori assigned dependences u:(t) and 
u2(t). 

2. The Coefficient ITP. Generally, it is necessary to determine uI(T)=C(T) and 

u2(T)=~(T). The functions ql(t) and q2(t) are assigned. 

We assume that the functions u(T) have received certain small increments, i.e., ~(T)= 
u(T) § . As a result, the temperature T (x, t), as in the preceding problem, will change 
by a certain amount O(x, Q, i.e., T(x,l)=T(x,l)+~(x,l) 

The problem is complicated by the fact that the argument of the sought dependences is 
the temperature, which itself is the solution of problem (5)-(8). In order to bypass this, 
we shall represent the sought dependences in the form of series with respect to certain sys- 
tems of basis functions, 

r/zl /7/2 

u~ (T) = ~] u,j q~i (T), u2 (T) = ~ u~, *t (T), ( 13 ) 
i=1 ~=i 

where ~i(T),and ~z(T) are the basis function, usj and u2s are the coefficients to be deter- 
mined, and m I and m 2 are the numbers of terms in the corresponding series, respectively. 

We write the perturbed dependences of the sought functions in the following form: 

Ul (T) --" •1 (T) -~ k 1 AU 1 (T) -~ 0Ul ~, 
OT 

u~ (P) = u~ (T) + k~ Au~ (T) + Ou2_ o, 
OT 

where k = 1 pertains to the sought dependence, while k = 0 pertains to the assigned depend- 
ence. 

According to (13), Au 1 = ~ AHlj q?j (T), Au~ = X Au2l qh (T). 
[=! l=! 
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As in the case of boundary-value ITP, we can write the expressions establishing a rela - 
tionship between Au(T) and O(x, t): 

0 e  _ A ( x ,  t ) - -  0z ~ + B ( x ,  t) 0~  ~ ~ .... _ m, Ot Ox z ~ + D (x, t) e + k, Au2~ & k~ ~ Au~i Fi, 
t=1 /=t 

O < x . < b ,  t o<t~ t :~ ,  ( 1 4 )  

~ ( x ,  to) = o, ( 1 5 )  

[( 2 - - % ) + ( 1 - - ~ )  Ou~(O, t) ]~(0,  t)-l-(1--%)u2(O, t) 
Ox 

a~(o, t ) _  
Ox 

(1 -- %) OT (0, t) m2 = - - - / ~  ~ zxu.,~ r (o, t), ( 16 )  
l=I 

Ou,_ (b, t) ] ~ (b, t) + (1 - -  ~ )  u~ (b, t) - -  
(2 - -  ~2) + ( 1 - -  c~) Ox 

rn 2 
OT (b, t) k2 ,~  Au.,t ~ (b, l), 

= - - ( 1 - -  ~2) Ox 
l=1 

oo (b, t) 
Ox 

(17)  

where 

A (x, t) = u, (x, t)/ul(x, t) ; 

B(x, t )=  2 Ou~(x, t) / 
Ox ul (x, t ) ;  

D(x, t ) :  [ o z u 2 ( X '  `)  O~tl(X , t ) ] / u 1 ( x  ' [ ) ;  
[ Ox z Ot J~ 

E,(x,  ,) = [O,l(x,t~OTC~,OOx ' Ox" + *z (x, ~) O~T(x,t)]/Ox~ Ul (x, t), 

Fj(x, t )=  ~j(x, t)OT(x, ~) /u~(x, t), i -  1, ~:~. 
at / 

[ ~ ], /7/2: 

The d e p e n d e n c e s  A(x, t), B(x, t), D(x, t), Ez(x, t), and F j ( x ,  t )  and a l s o  

u,,. (o, t), ou2 (o, t) , OT (0, t) , ~ (0, t), u2 @, t), Ou~ (b, t) 
Ox Ox Ox 

aT.(b, t-----a~, ,L (b, t), 
Ox 

can be calculated, as in the preceding problem, by solving problem (5)-(8) for the a priori 
assigned dependences u1(T) and u2(T) 

In solving the extremal ITP, the unhnown functions are usually determined from the 
condition for the minimum of the root-mean-square discrepancy, 

~h 
J(~)- ~.,~ .i' IT(X,, tl--t,~t)]~dt, (18) 

f ~ l  t o 

where n is the number of measurement points, Xr i= I, n, are the coordinates of the tempera- 
ture measurement points, fi(t) is the temperature measured at the i-th point, and ai, i= 
~1, n, are the weighting factors. 
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For estimating the change in functional (18) caused by small deviations of the ~ought 
functions bu, the following relationship holds: 

~'z fN 

M (Au) = ~ ~ ,!' (2 IT (x~, 0 - f ~  (Ol ~ (x~, t) + ~ (x : ,  t)) dr, 
i ~ l  lo 

(19) 

where @(Xi, l), f=l, n, is the solution of problem (9)-(12) or (14)-(17) at the measurement 

points. 

In the neighborbood of the sought solution of the ITP, i.e., for T(%~,t)~_fi(t),i=l,n, 

the value of AT(Au) can be estimated as 

n th 

AJ(Au) =- ~ ch S ~2 (X~, t) dt. 
i ~ l  to 

(2o) 

Evidently, the greater the effect of the sourght functions on the temperature at the 
measurement points T(X~,t) the larger the value of functional (20) for a certain fixed Au 
value, and the coordinates of the measurement points must satisfy the condition sup A/(Au) 

X 

(analog of condition (4) in the splace L2). 

On the other hand, for a fixed level of the measurement error iIAfljl, f=l,n , fulfillment 
of this condition ensures a minimum deviation of the sought ITP solution from the exact one. 

A quantitative estimate of the terms in relationship (20) corresponding to different 
coordinates X~,i=1, n, can be obtained by solving the above boundary-value problem (9)-(12) or 
(14)-(17) for the temperature deviations ~(x,l). 

In the case of a boundary-value ITP in linear formulation, i.e.,for C(T) = C o = ~onst 
and X(T) = i0 = const, relationships (5)-(8), as was mentioned above. In this case, func- 
tional (20) will evidently have a maximum value, while the conditionality of the prob:[em 
will be at its best if the measurement points are arranged in the vicinity of the boundaries 
of the region under investigation, where it is necessary to determine the relationship uz(t) 
or u2(t). 

This is supported, in particular, by the results given in [i]. 

In the case of the coefficient ITP, the results are not that obvious even if u1()')= 
uu=const, and u2(T)= u21=const, since Eq. (14) differs from Eq. (5) by the presence of 
terms proportional to #CT/~x 2 and OT/dt , respectively. 

NOTATION 

T(x, t), temperature; C(T), volumetric heat; %(T), thermal conductivity coefficient; 
T0(x), initial temperature distribution; t, time; x, space coordinate; t o and tk, beginning 
and end of the time interval, respectively; b, end of the space variable interval; q1(t) 
and q2(t), boundary functions. 

i. 

2. 
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